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Abstract. Semi-supervised learning (SSL) is far from real-world appli-
cation due to severely biased pseudo-labels caused by (1) class imbalance
and (2) class distribution mismatch between labeled and unlabeled data.
This paper addresses such a relatively under-explored problem. First,
we propose a general pseudo-labeling framework that class-adaptively
blends the semantic pseudo-label from a similarity-based classifier to the
linear one from the linear classifier, after making the observation that
both types of pseudo-labels have complementary properties in terms of
bias. We further introduce a novel semantic alignment loss to estab-
lish balanced feature representation to reduce the biased predictions. We
term the whole framework as Distribution-Aware Semantics-Oriented
(DASO) Pseudo-label. We conduct extensive experiments in a wide range
of imbalanced benchmarks and demonstrate that DASO reliably im-
proves SSL learners especially when both (1) class imbalance and (2)
distribution mismatch dominate.

Keywords: Semi-supervised Learning, Long-tailed Learning, Distribu-
tion Mismatch

1 Introduction

Semi-supervised learning (SSL) [4] has shown to be promising for leveraging
unlabeled data to reduce the data cost [3,2,19]. The common approach is to
produce pseudo-labels for unlabeled data based on model’s predictions and utilize
them for regularizing model training [13,17,19]. Although adopted in a variety
of tasks, these algorithms often assume class-balanced data, while many real-
world datasets exhibit long-tailed distributions [9]. With class-imbalanced data,
pseudo-labels become severely biased to the majority classes due to confirmation
bias [1]. Such pseudo-labels can further bias the model during training.

In this work, we present a new imbalanced SSL method for alleviating the
bias in pseudo-labels, while discarding the common assumption that the class
distribution of unlabeled data is the same with the label distribution. To this end,
as shown in Fig. 1, we observe that semantic pseudo-labels [11] obtained from a
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Fig. 1: DASO reduces the overall bias in pseudo-labels (PL) from unlabeled data
by blending two complementary PLs from different classifiers.

similarity-based classifier [18] are biased towards minority classes as opposed to
linear classifier-based pseudo-labels [17,19] being biased towards head classes. We
draw the key inspiration from those complementary properties of two different
types of pseudo-labels to develop a new pseudo-labeling scheme.

In this regard, we introduce a generic imbalanced SSL framework termed
Distribution-Aware Semantics-Oriented (DASO) Pseudo-label. We propose to
blend the linear and semantic pseudo-labels in different proportions for each
class to reduce the overall bias. As such, without resorting to any class priors
for the unlabeled data, DASO can reliably bring performance gain.

We further propose a simple yet effective semantic alignment loss to establish
balanced feature representation. We consistently assign two different views of an
unlabeled sample in feature space to the same prototype. These enhanced feature
representations not only help linear classifier produce less biased predictions, but
can also be reused for semantic pseudo-labels from similarity-based classifier.

The efficacy of DASO is extensively justified with the imbalanced versions of
benchmarks: CIFAR-10/100 [15] and STL-10 [5]. We even test DASO with Semi-
Aves [20], closely related to real-world scenarios. As such, DASO consistently
benefits under various distributions of unlabeled data and degrees of imbalance,
demonstrating to be a truly generic framework.

2 Proposed Method

2.1 Preliminaries

Problem setup. We consider K-class semi-supervised learning that leverages
both labeled data X = {(xn, yn)}Nn=1 and unlabeled data U = {um}Mm=1 to train
a model f . Note that the model f = f cls

ϕ ◦f enc
θ consists of a feature encoder f enc

θ

followed by a linear classifier f cls
ϕ , where θ and ϕ are the set of parameters of

f enc
θ and f cls

ϕ . The input image x is paired with the label y to learn Lcls (e.g .,
cross-entropy) from the prediction f(x). For the unlabeled data, a pseudo-label
p̂ ∈ RK is assigned to learn the unsupervised loss Lu = Φu (p̂, f(u)), where
Φu can be implemented via entropy [10] or consistency regularization [16,21],
depending on the SSL learner. For FixMatch [19] as an example, the pseudo-
label p̂ = OneHot

(
argmaxk p

(w)
k

)
with p(w) = f (Aw(u)) provides the target for
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(a) Recall of PL.
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Fig. 2: Analysis on recall and precision of pseudo-labels (PL) and the corre-
sponding test accuracy. Although USADTM [11] improves the recall of minority
classes, the precision of those classes is significantly reduced. In contrast, DASO
improves the recall of minority classes while sustaining the precision.

the prediction p(s) = f (As(u)) with some confident ones to the cross-entropy
loss H, where Aw and As correspond to weak augmentation (e.g ., random flip
and crop) and advanced augmentation (e.g ., RandAugment [6]), respectively.
Imbalanced semi-supervised learning. Let us denote Nk and Mk as the
number of labeled and unlabeled examples respectively in class k. The degree of
imbalance for each data is characterized by the imbalance ratio, γl or γu, where
we assume γl =

maxk Nk

mink Nk
≫ 1. γu is specified in the same way using the actual

labels without access during training. As note, class distribution of U (e.g .,
γu) can significantly diverge from X in practice, and such varying distributions
greatly affect the performances. In this regard, our goal is to debias the pseudo-
labels with class-imbalanced data, while maintaining the performances of SSL
algorithms with various, but still unknown class distribution of unlabeled data.
Trade-offs between linear and semantic pseudo-label. As shown in Fig. 2,
we compare FixMatch [19] and USADTM [11] using linear and semantic pseudo-
label respectively. From Figs. 2a and 2b, FixMatch achieves high recall in ma-
jority classes while low recall but high precision in the minorities, suggesting
that actual minority class examples are biased towards head classes. In contrast,
for USADTM, the actual majorities are biased towards minority classes. This is
because the precision of tail classes has decreased significantly in Fig. 2b, while
the recall has increased in sacrifice of the recall from head classes in Fig. 2a.

2.2 DASO Pseudo-label Framework

Framework overview. Without loss of generality, we consider DASO built on
top of FixMatch [19] for convenience. First, the linear and semantic pseudo-
label, p̂ and q(w) are produced with a feature z(w) = f enc

θ (Aw(u)) from the
linear and similarity-based classifier, respectively. Then the final pseudo-label p̂′
is obtained from the distribution-aware blending process using p̂ and q(w), and
it provides the target to Lu = Φu(p̂

′, p) instead of linear pseudo-label in the
existing SSL learner. In case of FixMatch, the prediction of u corresponds to
p = p(s) = f(As(u)). For the semantic alignment loss, the semantic pseudo-label
q(w) provides the target for q(s) to the cross-entropy, where q(s) is the result of
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the similarity-based classifier with z(s) = f enc
θ (As(u)). Note that we denote q(w)

as q̂ for simplicity, unless confusion arises.
Balanced prototype generation. To execute a similarity-based classifier for
obtaining the semantic pseudo-label, we first build a set of class prototypes
C = {ck}Kk=1 from X , similar to [11]. In detail, we build a dictionary of memory
queue Q = {Qk}Kk=1 where each key corresponds to the class and Qk denotes
a memory queue for class k with the fixed size |Qk|. The class prototype ck for
every class k is efficiently calculated by averaging the feature points in the queue
Qk, where we update Qk for all k at every step by pushing new features from
labeled data in the batch and discarding the most old ones when Qk is full.
Linear and semantic pseudo-label generation. We obtain linear pseudo-
label p̂ as: p̂ = σ(f cls

ϕ (z(w))). Semantic pseudo-label q̂ is obtained from the sim-
ilarity classifier that measures the per-class similarity of a feature point z of
either z(w) or z(s) to the prototypes C: q = σ (sim(z,C) / Tproto), where sim(·, ·)
corresponds to cosine similarity, and Tproto is a temperature hyper-parameter.
Note that p̂ is biased towards head classes while q̂ is the vice versa.
Distribution-aware blending. To obtain unbiased pseudo-label p̂′, the seman-
tic pseudo-label q̂ should be exploited differently across the class. To this end,
we increase the exposure of the component of q̂ when p̂ is more biased to the
head classes. Formally, we blend them with a set of distribution-aware weights
υ = {υk}Kk=1 to reduce the bias that might occur when using either p̂ or q̂:

p̂′ = (1− υk′) p̂+ υk′ q̂, (1)

where υk = 1

maxk m̂
1/Tdist
k

(
m̂

1/Tdist
k

)
and k′ is the class prediction from p̂. Note

that m̂ is the normalized class distribution of the current pseudo-labels and
Tdist is a hyper-parameter that intercedes the optimal trade-offs between p̂ and
q̂. Overall, in terms of the linear pseudo-label, the minority pseudo-labels will
remain as minority, while pseudo-labels predicted as majority will be likely to
recover the original classes thanks to large υk′ . This makes DASO flexible to
various distributions of U without resorting to any distribution.
Semantic alignment loss. To establish balanced feature representations, we
propose new semantic alignment loss. In high-level, we align each unlabeled sam-
ple u to the most similar prototype used in the similarity classifier, by imposing
consistent assignment for two augmented views Aw(u) and As(u) to the same
ck in feature space. Note q̂ provides the target for q(s) with cross-entropy H:

Lalign = H
(
q̂, q(s)

)
. (2)

Finally, the enhanced representation can implicitly guide the classifier f cls
ϕ to

produce less biased predictions in general.
Total objective. DASO can easily couple with other SSL algorithms with the
modified pseudo-label, where the final DASO objective is as below:

LDASO = Lcls + λuLu + λalignLalign, (3)

where Lcls and Lu come from the base SSL learner, and Lalign is newly introduced
from DASO. Note that Lu takes the blended pseudo-label in Eq. (1).
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CIFAR10-LT CIFAR100-LT
γ = γl = γu = 100 γ = γl = γu = 150 γ = γl = γu = 10 γ = γl = γu = 20

Algorithm N1 = 500 N1 = 1500 N1 = 500 N1 = 1500 N1 = 50 N1 = 150 N1 = 50 N1 = 150
M1 = 4000 M1 = 3000 M1 = 4000 M1 = 3000 M1 = 400 M1 = 300 M1 = 400 M1 = 300

FixMatch [19] 67.8±1.13 77.5±1.32 62.9±0.36 72.4±1.03 45.2±0.55 56.5±0.06 40.0±0.96 50.7±0.25
w/ DARP [14] 74.5±0.78 77.8±0.63 67.2±0.32 73.6±0.73 49.4±0.20 58.1±0.44 43.4±0.87 52.2±0.66
w/ CReST+ [22] 76.3±0.86 78.1±0.42 67.5±0.45 73.7±0.34 44.5±0.94 57.4±0.18 40.1±1.28 52.1±0.21
w/ DASO (Ours) 76.0±0.37 79.1±0.75 70.1±1.81 75.1±0.77 49.8±0.24 59.2±0.35 43.6±0.09 52.9±0.42

Table 1: Comparison of accuracy (%) on CIFAR10/100-LT under γl = γu setup.

CIFAR10-LT (γl ̸= γu) STL10-LT (γu = N/A)
γu = 1 (uniform) γu = 1/100 (reversed) γl = 10 γl = 20

Algorithm N1 = 500 N1 = 1500 N1 = 500 N1 = 1500 N1 = 150 N1 = 450 N1 = 150 N1 = 450
M1 = 4000 M1 = 3000 M1 = 4000 M1 = 3000 M = 100k M = 100k M = 100k M = 100k

FixMatch [19] 73.0±3.81 81.5±1.15 62.5±0.94 71.8±1.70 56.1±2.32 72.4±0.71 47.6±4.87 64.0±2.27
w/ DARP [14] 82.5±0.75 84.6±0.34 70.1±0.22 80.0±0.93 66.9±1.66 75.6±0.45 59.9±2.17 72.3±0.60
w/ CReST [22] 83.2±1.67 87.1±0.28 70.7±2.02 80.8±0.39 61.7±2.51 71.6±1.17 57.1±3.67 68.6±0.88
w/ CReST+ [22] 82.2±1.53 86.4±0.42 62.9±1.39 72.9±2.00 61.2±1.27 71.5±0.96 56.0±3.19 68.5±1.88
w/ DASO (Ours) 86.6±0.84 88.8±0.59 71.0±0.95 80.3±0.65 70.0±1.19 78.4±0.80 65.7±1.78 75.3±0.44

Table 2: Comparison of accuracy (%) for imbalanced SSL methods on CIFAR10-
LT and STL10-LT under γl ̸= γu setup.

3 Experiments

3.1 Experimental Setup

Datasets. We conduct SSL experiments with various scenarios where the class
distribution of unlabeled data can deviate from that of labeled data. We adopt
CIFAR-10/100 [15] and STL-10 [5] typically adopted in SSL literature [19]. We
make the imbalanced versions by exponentially decreasing the amount of samples
per class following [7,14]. We also consider Semi-Aves [20], which is the large-scale
collection of bird species with natural long-tailed distribution.
Baseline methods. We mainly adopt FixMatch [19] as baseline and consider
DARP [14] and CReST [22] for comparison.
Training and evaluation. We train Wide ResNet-28-2 [23] on CIFAR10/100-
LT and STL10-LT . For Semi-Aves, we fine-tune ResNet-34 [12] pre-trained on
ImageNet [8]. For evaluation, we measure the top-1 accuracy.

3.2 Results on CIFAR10/100-LT and STL10-LT.

In case of γl = γu. We compare imbalanced SSL methods: DARP [14] and
CReST+ [22] with the proposed DASO on FixMatch. Remarkably, DASO shows
comparable or even better results in most setups with significant gains compared
to baseline FixMatch, although DARP and CReST+ even push the predictions
of unlabeled data to the label distribution using the assumption γl = γu (i.e.,
distribution alignment [2]). This verifies the efficacy of DASO for debiasing, even
without resorting to the label distribution.
In case of γl ̸= γu. For CIFAR10-LT, we consider two extreme cases for the
class distribution of unlabeled data: uniform (γu = 1) and flipped long-tail (γu =
1/100) with respect to the labeled data. For STL10-LT, since we cannot control
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Benchmark Semi-Aves
U = Uin U = Uin + Uout

Method Last Top1 Med20 Top1 Last Top1 Med20 Top1

FixMatch [19] 53.8±0.17 53.8±0.13 45.7±0.89 46.1±0.50
w/ DARP [14] 52.3±0.48 52.1±0.48 46.3±0.70 46.4±0.61
w/ CReST [22] 52.1±0.36 52.2±0.27 43.6±0.69 43.6±0.68
w/ CReST+ [22] 53.9±0.38 53.8±0.38 45.1±1.09 45.2±1.00
w/ DASO (Ours) 54.5±0.08 54.6±0.12 47.9±0.41 47.9±0.38

Table 3: Accuracy on Semi-Aves [20].
DASO shows the best among imbal-
anced SSL methods. DASO also per-
forms well in presence of large Uout.

Lalign C10 STL10

FixMatch ✗ 68.25 55.53
DASO ✗ 70.98 61.64
FixMatch ✓ 73.15 58.51

DASO ✓ 75.97 70.21

Table 4: Ablation
study on blending
and the semantic
alignment loss.

C10 STL10

υk = 0 73.15 58.51
υk = 1 72.35 62.60
υk = 0.5 72.96 64.21

DASO 75.97 70.21

Table 5: Ablation
study on pseudo-
label blending
strategy.

the size and imbalance of unlabeled data due to unknown labels, we instead
set γl ∈ {10, 20} with the whole fixed unlabeled data. Table 2 summarizes the
results of imbalanced SSL methods under the setups.

Surprisingly, DASO outperforms other baselines by significant margins in
most cases. Though DARP [14] estimates the distribution of unlabeled data
in advance as prior, the estimation accuracy decreases as using less labels for
training. Under γl ̸= γu, we evaluate both CReST and CReST+ [22]. Clearly,
resorting to the label distributions as the prior for unlabeled data in CReST+
rather harms the accuracy since the assumption of γl = γu is violated. The
accuracy loss becomes more severe under γu = 1/100.

By virtue of debiased pseudo-labels from DASO, the abundant minority-
class unlabeled samples are correctly used. Consequently, the results confirm
that conditioning on a certain distribution for unlabeled data (e.g ., γu = γl) is
undesirable in imbalanced SSL, and DASO greatly reduces the bias in presence
of distribution mismatch, even without access to the distribution.

3.3 Results on Large-Scale Semi-Aves

We test DASO on a realistic Semi-Aves benchmark [20]. Both labeled data (X )
and unlabeled data (U) show long-tailed distributions, while U contains large
open-set examples (Uout) that do not belong to any of the classes in X . The
results are shown in Table 3. We report both cases: U = Uin and U = Uin +Uout,
where Uin contains examples that share the class of X .
In case of U = Uin. As it has the distribution gap between X and U , DARP [14]
and CReST [22] show only a slight gain or even unsatisfactory performances
compared to FixMatch [19]. In contrary, DASO shows the best performance
among the baselines with favorable improvements upon FixMatch.
In case of U = Uin + Uout. Since U contains large amount of open-set class
examples, performance drop is observed consistently across all baselines. Among
them, DASO shows the best performance with favorable gain. DARP [14] is
slightly helpful for optimization. Concerning CReST and CReST+ [22], they
rather performs poorly than FixMatch due to noisy predictions from Uout. As
such, DASO has superiority in the challenging but practical scenario of long-
tailed distributions, even in presence of large amount of open-set examples.
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3.4 Ablation Study

Component analysis. Table 4 studies the two major components of DASO:
distribution-aware pseudo-label blending and the semantic alignment loss. Both
blending mechanism and Lalign provides significant gain over FixMatch. For
example, the blending and Lalign achieve about 6% and 3% absolute gain, re-
spectively, and combining both shows 15.7% gain in total on STL10.
Effect of pseudo-label blending. Table 5 studies the different way of pseudo-
label blending on DASO with constant weights. Due to the bias in the pseudo-
labels, using either linear (υk = 0) or semantic (υk = 1) pseudo-label leads to a
marginal gain. In addition, blending them with the same ratio (υk = 0.5) shows
the lower performance compared to our final DASO, which demonstrates that
distribution-aware class-adaptive blending is crucial for imbalanced SSL.

4 Conclusion

We proposed a novel distribution-aware semantics-oriented (DASO) pseudo-label
for imbalanced semi-supervised learning. DASO adaptively blends the linear and
semantic pseudo-labels within each class to mitigate the overall bias across the
class. Moreover, we introduced semantic alignment loss. From extensive exper-
iments, we showed the efficacy of DASO on challenging and realistic setups,
especially when class imbalance and class distribution mismatch dominate.
Remarks This paper is a re-publishing (summary presentation) of the paper
which has been published in 2022 IEEE CVF Computer Vision and Pattern
Recognition Conference (CVPR) by request of the IW-FCV2023 program com-
mittee to share the research results.
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