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Abstract. Recently, the number of images for pre-training of deep learn-
ing models has been increasing, and large-scale data sets contain inappro-
priate images such as ethically inappropriate images, copyright infringe-
ment, and labeling errors. A method to solve these is by using a fractal
database that generates images by mathematical formulas without us-
ing natural images. Our goal is to show that the classification accuracy
obtained by pre-training with fractal images is comparable to natural
images. In the experiments, we compare the performance on the tasks to
classify CT images of COVID-19 pneumonia and regular pneumonia.
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1 Introduction

Imaging diagnosis by doctors is essential for the detection of disease. However,
if image diagnosis is performed by doctors, even doctors sometimes fail to detect
lesions from large amounts of data. This would cause a problem of delays in
treatment. Image recognition using deep learning would enable us to find diseases
early.

When we perform image recognition using deep learning(DL), first, we per-
form pre-training using a large, public dataset, and then the DL model is up-
dated by fine-tuning using the data of the application field. In recent years, the
required number of datasets for pre-training has been increasing to improve the
accuracy of DL, and the creation cost of datasets, including image collection
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and annotation, has also been increasing. Furthermore, there are unignorable
problems in the public dataset, such as labeling errors[1].

To overcome such problems, Kataoka et al. propose to generate a large
amount of training data based on a mathematical model and to use the data
for pre-training of DL[2]. Kataoka et al.[2] have shown that pre-training using a
formula-driven database for natural image classification tasks yields results that
are comparable to those of conventional large-scale natural image databases such
as ImageNet. In this study, we use a fractal image database, a mathematical
model-based database. And we demonstrate its effectiveness for CT image clas-
sification tasks. In the following discussion, we call the fractal image database
Fractal Database(FDB).

2 Generating a Fractal Database

In this section, we describe a method for generating fractal Database[2].

2.1 Generating Fractal Images

IFS (Iterated Function System) is a model for generating the point set X =
{x1, x2, . . . , xK}. IFS is defined by a set of transformations wi : X → X and
corresponding probabilities pi in the complete metric space X (Eq. (1)). where
N represents the number of pairs (wi, pi).

IFS = {X;w1, w2, . . . , wN ; p1, p2, . . . , pN}. (1)

Using the IFS, a fractal S = {xt}∞t=0 ∈ X is constructed by the random iteration
algorithm.

The transformation w is defined as:

wi(x; θi) =

[
ai bi
ci di

]
x+

[
ei
fi

]
. (2)

θi = (ai, bi, ci, di, ei, fi) is 6 parameters for rotation and shifting. It generates a
point set to depict a fractal image in the two-dimensional Euclidean space. pi is
the probability for selecting the transformation w, and is calculated as follows:

pi =
|detAi|∑N
i=1 |detAi|

, Ai =

[
ai bi
ci di

]
. (3)

The following procedure obtains the point set X that depicts a fractal image.

I Determine the number N of pairs (wi, pi) from a discrete uniform distribu-
tion on [2, 3, ..., 8].

II The parameters ai, bi, . . . , fi in the transformation wi in Eq. (2) are ran-
domly selected from the continuous uniform distribution on [−1, 1] and the
probability pi is determined by Eq. (3).
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III Set the initial value to x0 = (0, 0)T . Choose the transformation wi from
w1, . . . , wN with according to the probability pi. Apply it to the position
xt−1 to obtain the new position xt.

IV By repeating (III) K times, we obtain a point set X = {x1, x2, . . . , xK}.

When we draw a fractal image from the point set, we randomly choose a value
of 0 to 127. And draw the values at the 3×3 region centered on the obtained point
set X = {x1, x2, . . . , xK}. Get the maximum and minimum x and y coordinates
of the point set X to normalize the size into a pre-defined image size. Finally,
calculate the pixel filling rate. If it is above a certain threshold value, it is used
as an image for pre-training.

We assign the same category label for images generated by the same IFS.
IFS is characterized by a set of parameters and their corresponding probabilities,
expressed as θ = {(wi, pi)}Ni=1. When we create a data set of n classes, we repeat
steps (I)-(IV) at n times. In this research, we use FDB having 1000 classes. The
procedure for generating more data for each class is described in the next section.

2.2 Data Augmentation

In section 2.1, we generated one image per class. These classes are related
by fractal parameters ai, bi, . . . , fi. Because this is insufficient for training, it
is necessary to augment the data for each class, as is often performed in the
standard training procedure. We apply the two types of augmentation methods
in this paper shown in Figure 1. The first one is based on the original paper[2].
The other one is the image-based augmentation conventionally performed in the
standard training process[3].

Formula-based Augmentation As used in [2], we increase the data by the
three types of augmentation methods as follows.

I Changing the parameter set of IFS.
II Rotate generated fractal images.
III Changing 3× 3 patch patterns for drawing fractal images.

We carry out (I) 25 times, (II) 4 times, and (III) 10 times. Finally, we generate
the database containing 1000 images per class. We call this database FDB1k-1k.

Image-based Augumentation The data augmentation described in Section
2.2 draws fractal images for each parameter of IFS. This process is quite time-
consuming. Instead of this, we apply simple data augmentation for training[3].
As is the standard data augmentation process, we apply affine transformations
and color transformations using random numbers to each fractal image using
the RandomAffine function and ColorJitter function in PyTorch libraries. This
would enables us to obtain sufficient number of training data for pre-training as
is the previous section. We call the augmented data One-instance Fractal Data
Base (OFDB). More specifically, we use OFDB1k and OFDB10k data sets which
contains 1000 classes and 10000 classes respectively.
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Fig. 1: FDB and OFDB data sets

3 Training Pneumonia Discriminator

This Section describes the precedure for training pneumonia discriminator
using FDB1k-1k, OFDB1k, and OFDB10k.

3.1 Pre-training

For comparing the pre-training results of fractal data sets, we use ImageNet
Version 2 (IN V2). IN V2 is a pre-trained model of 1000 class classification using
ResNet50 as the backbone network. Table 1 shows the pre-training conditions. As
mentioned is Section 2.2, FDB1k-1k need to generate point set for each images,
i.e. 1000 sets for each class. On the other hand, OFDB uses PyTorch function
for data augmentation, which realizes efficient computation. Therefore, it has
the advantage of short learning time.

Table 1: Pre-training conditions
FDB1k-1k OFDB1k OFDB10k

Hours 168 8 27

Epochs 90 9000 900

Class 1000 10000

Network ResNet-50

Batch size 64

3.2 Fine-tuning

Next, we perform fine-tuning to adapt the pre-trained models to the pneumo-
nia data. In this paper, we aim the distinguishes between two classes of regular
pneumonia and COVID-19 pneumonia. We set the fine-tuning conditions: the
epochs number of 90, the batch size of 64, and the learning rate of 0.01.
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4 Experiment

We conduct the experiment to examine the effectiveness of the fractal database.

4.1 Experimental Setup

Figure 2 show the two examples of CT images for experiments. (a) is nor-
mal pneumonia and (b) is COVID-19 pneumonia. These images were provided
by Kindai University Hospital under the permission of the Ethics Committee,
Kindai University Faculty of Medicine. Using a data set containing these images,
we perform a two-class classification of COVID-19 pneumonia or other. Because
COVID-19 pneumonia has frosted-glass shadows in CT images, those features
would be an essential cue for classification. 10-fold cross-validation is used for
verification. The number of images used is 7092 for regular pneumonia and 6621
for COVID-19 pneumonia.

(a) Normal pneumonia (b) COVID-19 pneumonia

Fig. 2: Example of normal pneumonia and COVID-19 pneumonia

4.2 Results

Table 1 and Figure 3 show the results of 10-fold cross-validation. In Table
1, we show the average of the highest accuracy and recall rate for the test data
among 90 trials. The accuracy of IN V2 was the highest at 90.84%, followed by
OFDB1k at 86.43%, OFDB10k at 85.27%, and FDB1k-1k at 85.53%. However,
we have to note that decreasing the false-negative, i.e., missing COVID-19 cases,
is crucial for diagnosis. From this point of view, the OFDB1k and OFDB10k yield
slightly better results than IN V2. Figure 3 shows the box plot of accuracy and
recall during 10-fold cross-validation. This also shows that there is almost no
difference between the recall values for OFDB1k, OFDB10k, and IN V2, while
the accuracy of IN V2 is higher than others.
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Table 2: 10-fold cross-validation(%)
FDB1k-1k OFDB1k OFDB10k IN V2

Accracy 85.53 86.43 85.27 90.84

Recall 91.54 95.51 95.26 95.48

Fig. 3: Box plot of accuracy and recall during 10-fold cross-validation

4.3 Visual Explanations for Decisions

Figure 4 shows the visualization of the reasons behind predictions by LIME[5].
This shows the parts that significantly contribute to the classification. While the
green color represents the part that has a higher predicted probability of the cor-
rect label, the red color shows a lower probability. From this figures, we can see
that the models trained by the fractal database, i.e., FDB and OFDB, focus on
the larger regions in the lung area.



Title Suppressed Due to Excessive Length 7

(a) FDB1k-1k (b) OFDB1k

(c) OFDB10k (d) IN V2

Fig. 4: Visualization of attention area by LIME

5 Conclusion

Although the accuracy of classification using FDB and OFDB are lower than
IN V2, the recall values of OFDB are almost the same as the IN V2 model.
OFDB has the advantage that this has less computational costs. It needs only
one single image for each class. Data augmentation can be efficiently conducted
by PyTorch libraries.

From section 4.3, FDB and OFDB focus more correctly in the lungs. This
implies that the fractal-based database has the potential to achieve higher per-
formance if we have sufficient data for fine-tuning because the model trained by
FDB and OFDB focuses on appropriate regions.

In future work, we will investigate the appropriate model to generate a
database for pre-training. In the current implementation, we use the model same
as the original paper. It is expected that higher performance can be obtained
by exploring database generation models that are suitable for the data in the
application domain. Additionally, there are still the room for optimizing the
hyper-parameters for pre-training, which helps to obtain more reliable models.
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